16.2: Vector Fields

Jeremiah Southwick

Spring 2019

Last class

Definition

If $F(x, y, z)$ is defined on a curve C given parametrically by
$\overrightarrow{\mathbf{r}}(t)=f(t) \overrightarrow{\mathbf{i}}+g(t) \overrightarrow{\mathbf{j}}+h(t) \overrightarrow{\mathbf{k}}, a \leq t \leq b$, then the line integral of F over C is

$$
\int_{C} F(x, y, z) d s=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} F\left(x_{k}, y_{k}, z_{k}\right) \Delta s_{k}
$$

Evaluating

To turn a line integral into an integral with respect to t, we replace $F(x, y, z)$ by $F(f(t), g(t), h(t))$, and $d s$ by $\|\vec{v}(t)\| d t$. So

$$
\int_{C} F(x, y, z) d s=\int_{t=a}^{t=b} F(f(t), g(t), h(t))\|\overrightarrow{\mathbf{v}}(t)\| d t
$$

Geometric representation of a line integral

In the case that the curve C is 2-dimensional (i.e., restricted to the $x y$-plane), and the function is a 2-variable function $f(x, y)$, then the line integral of $f(x, y)$ over C is the area between the function and the curve.

Vector Fields

Definition

A vector field is a function

$$
\overrightarrow{\mathbf{F}}=M(x, y, z) \overrightarrow{\mathbf{i}}+N(x, y, z) \overrightarrow{\mathbf{j}}+P(x, y, z) \overrightarrow{\mathbf{k}}
$$

(i.e., a function that gives you a vector for every point in space). A vector field could represent the flow of a liquid through a pipe, or the force of gravity, or any application where a force is involved.

Line integral of a vector field

We can integrate a vector field along a curve. This quantity keeps track of the work a vector field does on a particle traveling along the curve.

Definition

Let $\overrightarrow{\mathbf{F}}$ be a vector field with continous components defined a long a smooth curve C parametrized by $\overrightarrow{\mathbf{r}}(t), a \leq t \leq b$. Then the line integral of $\overrightarrow{\mathbf{F}}$ along C is

$$
\int_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s=\int_{C}\left(\overrightarrow{\mathbf{F}} \cdot \frac{d \overrightarrow{\mathbf{r}}}{d s}\right) d s=\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}=\int_{a}^{b}\left(\overrightarrow{\mathbf{F}} \cdot \frac{d \overrightarrow{\mathbf{r}}}{d t}\right) d t
$$

Evaluating

If we are given $\overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{i}}+N \overrightarrow{\mathbf{j}}+P \overrightarrow{\mathbf{k}}$ and
$C: \overrightarrow{\mathbf{r}}(t)=g(t) \overrightarrow{\mathbf{i}}+h(t) \overrightarrow{\mathbf{j}}+k(t) \overrightarrow{\mathbf{k}}$, then we follow the procedure below:

1. Write $\overrightarrow{\mathbf{F}}$ in terms of $C: \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}(t))$.
2. Find $\frac{d \vec{r}}{d t}$.
3. Evaluate with respect to t as

$$
\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}=\int_{a}^{b}\left(\overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}(t)) \cdot \frac{d \overrightarrow{\mathbf{r}}}{d t}\right) d t
$$

Example

Example

Let $\overrightarrow{\mathbf{F}}(x, y, z)=z \overrightarrow{\mathbf{i}}+x y \overrightarrow{\mathbf{j}}-y^{2} \overrightarrow{\mathbf{k}}$ be a vector field. Find the integral of $\overrightarrow{\mathbf{F}}$ along C given by $\overrightarrow{\mathbf{r}}(t)=t^{2} \overrightarrow{\mathbf{i}}+t \overrightarrow{\mathbf{j}}+\sqrt{t} \overrightarrow{\mathbf{k}}, 0 \leq t \leq 1$.
We have $\overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}(t))=\sqrt{t} \overrightarrow{\mathbf{i}}+t^{3} \overrightarrow{\mathbf{j}}-t^{2} \overrightarrow{\mathbf{k}}$, and $\frac{d \overrightarrow{\mathbf{r}}}{d t}=2 t \overrightarrow{\mathbf{i}}+\overrightarrow{\mathbf{j}}+\frac{1}{2 \sqrt{t}} \overrightarrow{\mathbf{k}}$. So

$$
\begin{gathered}
\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}=\int_{0}^{1}\left(\overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}(t)) \cdot \frac{d \overrightarrow{\mathbf{r}}}{d t}\right) d t=\int_{0}^{1}\left(2 t^{3 / 2}+t^{3}-\frac{1}{2} t^{3 / 2}\right) d t \\
\left.=\frac{4}{5} t^{5 / 2}+\frac{t^{4}}{4}-\frac{1}{5} t^{5 / 2}\right]_{0}^{1}=\frac{17}{20}
\end{gathered}
$$

